

26th Feb. 2021 | Shift - 2 CHEMISTRY

Section - A

1. 2,4-DNP test can be used to identify:

(1) aldehyde

(2) halogens

(3) ether

(4) amine

Ans. (1)

Sol.

$$R-CHO + H_2N - NH \longrightarrow NO_2$$

$$-H_2O \qquad NO_2$$

$$R-CH=N-NH \longrightarrow NO_2$$

2. Identify A in the following chemical reaction.

CHO
i) HCHO, NaOH
ii) CH₃CH₂Br,NaH, DMF
iii) HI,
$$\Delta$$

$$(1) \qquad \begin{array}{c} O \\ C - OCH_2CH_3 \end{array}$$

Ans. (3) Sol.

- **3.** The nature of charge on resulting colloidal particles when FeCl₃ is added to excess of hot water is:
 - (1) positive
 - (2) neutral
 - (3) sometimes positive and sometimes negative
 - (4) negative

Ans. (1)

Sol. If $FeCl_3$ is added to excess of hot water, a positively charged sol of hydrated ferric oxide is formed due to adsorption of Fe^{3+} ions.

4. Match List-I with List-II List-I

(a) $N_2^+CI^- \xrightarrow{Cu_2CI_2} +N_2$

$$(b) \quad \bigcirc \longrightarrow \qquad \stackrel{N_2^+Cl^-}{\longrightarrow} \qquad \stackrel{Cu,HCl}{\longrightarrow} \qquad +N_2$$

(c)
$$2CH_3CH_2CI + 2Na \xrightarrow{Ether} C_2H_5 - C_2H_5 + 2NaCI$$

(d)
$$2C_2H_5Cl +2Na \xrightarrow{Ether} C_6H_5 - C_6H_5 + 2NaCl$$

List-II

- (i) Wurtz reaction
- (ii) Sandmeyer reaction
- (iii) Fitting reaction
- (iv) Gatterman reaction

Choose the correct answer from the option given below:

Ans. (3)

Sol. (a)
$$N_2^+Cl^- Cu_2Cl_2 + N_2$$
(Sandmeyer reaction)

(b)
$$N_2^+Cl^-$$
 Cu,HCl + N_2

(c)
$$2CH_3-CH_2CI + 2Na \xrightarrow{\text{Ether}} C_2H_5-C_2H_5+2NaCI$$

(D)
$$2C_6H_5CI + 2Na \xrightarrow{\text{Ether}} C_6H_5-C_6H_5+2NaCI$$

- In $CH_2 = C = CH CH_3$ molecule, the hybridization of carbon 1, 2, 3 and 4 respectively are:
 - (1) sp^2 , sp, sp^2 , sp^3
 - (2) sp^2 , sp^2 , sp^2 , sp^3
 - (3) sp^2 , sp^3 , sp^2 , sp^3
 - (4) sp^3 , sp, sp^3 , sp^3

Ans. (1)

Sol.
$$CH_{sp^2} = CH_{sp^2} - CH_{sp^3}$$

6. Match List-I with List-II.

List-I

List-II

- (a) Sucrose
- (i) β -D-Galactose and β -D-Glucose
- (b) Lactose
- (ii) α -D-Glucose and β -D-Fructose

(c) Maltose

(iii) α -D- Glucose and α -D-Glucose

Choose the correct answer from the options given below:

- (1) (a)-(iii), (b)-(ii), (c)-(i)
- (2) (a)-(iii), (b)-(i), (c)-(ii)
- (3) (a)-(i), (b)-(iii), (c)-(ii)
- (4) (a)-(ii), (b)-(i), (c)-(iii)

Ans. (4)

Sol. Sucrose $\rightarrow \alpha$ -D- Glucose and β -D- Fructose

Lactose $\rightarrow \beta$ -D- Galactose and β -D- Glucose

Maltose $\rightarrow \alpha$ -D- Glucose and α -D- Glucose

- **7.** Which pair of oxides is acidic in nature?
 - (1) N₂O, BaO
 - (2) CaO, SiO₂
 - (3) B₂O₃, CaO
 - (4) B₂O₃, SiO₂

Ans. (4)

Sol. B_2O_3 and SiO_2 both are oxides of non-metal and hence are acidic in nature.

8.	Calgon is used to	for water treatment.	Which of the followin	g statement is NO	Γ true about calgon?
----	-------------------	----------------------	-----------------------	-------------------	----------------------

- (1) Calgon contains the 2nd most abundant element by weight in the earth's crust.
- (2) It is also known as Graham's salt.
- (3) It is polymeric compound and is water soluble.
- (4) It doesnot remove Ca²⁺ ion by precipitation.

Ans. (1)

Sol. $Na_6(PO_3)_6$ or $Na_6P_6O_{18}$

Order of abundance of element in earth crust is

O > Si > Al > Fe > Ca > Na > Mg > K

So second most abundant element in earth crust is Si not Ca.

- **9.** Ceric ammonium nitrate and CHCl₃/alc. KOH are used for the identification of functional groups present in ______and_____respectively.
 - (1) alcohol, amine

(2) amine, alcohol

(3) alcohol, phenol

(4) amine, phenol

Ans. (1)

- **Sol.** Alcohol give positive test with ceric ammonium nitrate and primary amines gives carbyl amine test with CHCl₃, KOH.
- **10.** Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: In TII_3 , isomorphous to CsI_3 , the metal is present in +1 oxidation state.

Reason R: TI metals has fourteen *f* electrons in its electronic configuration.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both A and R are correct and R is the correct explanation of A
- (2) A is not correct but R is correct
- (3) Both A and R are correct R is NOT the correct explanation of A
- (4) A is correct but R is not correct

Ans. (3)

Sol. $T\ell I_3$ is $T\ell^+ I_3^-$

 CsI_3 is Cs^+ I_3^-

Thallium shows $T\ell^+$ state due to inert pair effect.

11. The correct order of electron gain enthalpy is:

- (1) S > Se > Te > O
- (2) 0 > S > Se > Te
- (3) S > O > Se > Te
- (4) Te > Se > S > O

Ans. (1)

Sol. Electron gain enthalpy of O is very low due to small size.

12. Identify A in the given chemical reaction.

$$\begin{array}{c} \text{CH}_2\text{CH}_2\text{CHO} \\ \hline \\ \text{CH}_2\text{CH}_2\text{CHO} \end{array} \xrightarrow[C_2H_5\text{OH},H_2\text{O}]{\text{NaOH}} \\ \text{A (Major product)} \end{array}$$

Ans. (1)

Sol.
$$CH_2CH_2CHO$$
 $NaOH$ CH_2CH_2CHO CH_2CH_2CHO CH_2CH_2CHO CH_2CH_2CHO

(Internal aldol condensation)

13. Match List-I with List-II

List-I	List-II
(a) Siderite	(i) Cu
(b) Calamine	(ii) Ca
(c) Malachite	(iii) Fe
(d) Cryolite	(iv) Al
	(v) Zn

Choose the correct answer from the options given below:

- (1) (a)-(i), (b)-(ii), (c)-(v), (d)-(iii)
- (2) (a)-(iii), (b)-(v), (c)-(i), (d)-(iv)
- (3) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- (4) (a)-(iii), (b)-(i), (c)-(v), (d)-(ii)

(2) Ans.

Sol. Siderite - FeCO₃

> Calamine - ZnCO₃

Malachite - CuCO₃.Cu(OH)₂

Cryolite - Na_3AIF_6

14. Identify A in the given reaction

OH
$$SOCl_2 \rightarrow A \text{ (Major product)}$$
HO CH_2OH

(1) OH
$$CH_2CI$$
 (2) CI CH_2CI (3) OH CH_2OH (4) CI CH_2CI

ОН

 CH_2CI

CI

Ans. (2)

15. Match List-I with List-II.

List-II List-II

- (a) Sodium Carbonate (i) Deacon
- (b) Titanium (ii) Caster-Kellner
- (c) Chlorine (iii) Van-Arkel
- (d) Sodium hydroxide (iv) Solvay

Choose the correct answer from the option given below:

- (1) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
- (2) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
- (3) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
- (4) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)

Ans. (2)

Sol. Sodium carbonate Na₂CO₃ & NaHCO₃

Titanium: Van arkel method

$$T_i + I_2 \xrightarrow{T1} T_i I_4$$

$$T_i I_4 \xrightarrow{T_2 > T_1} T_i + 2 I_2$$
Refined titanium (9)

Chlorine: Decon's process

$$HCI + O_2 \xrightarrow{CuCl_2} H_2O + Cl_2$$

Sodium hydroxide :- Caster-Kellner cell

16. Match List-I with List-II.

1:-4 T

LIST-1	(Bond order)		
(Molecule)			
(a) Ne ₂	(i) 1		
(b) N ₂	(ii) 2		
(c) F ₂	(iii) 0		
(d) O ₂	(iv) 3		
	c		

Choose the correct answer from the options given below:

- (1) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii) (2) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- (3) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii) (4) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)

Ans. (1)

As per molecular orbital theory

- **17.** Which of the following forms of hydrogen emits low energy β^- particles?
 - (1) Proton H⁺
 - (2) Deuterium ²₁H
 - (3) Protium ¹₁H
 - (4) Tritium ³H
- Ans. (4)
- **Sol.** Tritium isotope of hydrogen is radioactive and emits low energy β^- particles. It is because of high n/p ratio of tritium which makes nucleus unstable.
- **18.** A. Phenyl methanamine
 - B. N, N-Dimethylaniline
 - C. N-Methyl aniline
 - D. Benzenamine

Choose the correct order of basic nature of the above amines.

(1)
$$D > C > B > A$$

(2)
$$D > B > C > A$$

Ans. (4)

Delocalised
$$\ell p$$
.

 $CH_2 - NH_2$
 NH_2
 N

19.

Sol.

Considering the above reaction, the major product among the following is:

Ans. (3)

Sol.

20. Seliwanoff test and Xanthoproteic test are used for the identification of _____ and ____ respectively

(1) ketoses, proteins

(2) proteins, ketoses

(3) aldoses, ketoses

(4) ketoses, aldoses

Ans. (1)

Sol. Seliwanoff test and Xanthaproteic test are used for identification of 'Ketoses' and proteins respectively.

Section - B

1. The NaNO₃ weighed out to make 50 mL of an aqueous solution containing 70.0 mg Na⁺ per mL is ______g. (Rounded off to the nearest integer)

[Given: Atomic weight in g mol⁻¹. Na: 23; N: 14; O: 16]

Ans. 13

Sol. $Na^{+} = 70 \text{ mg/mL}$

 $W_{Na^{+}}$ in 50mL solution = 70×50 mg = 3500 mg = 3.5 gm

Moles of Na⁺ in 50 ml solution = $\frac{3.5}{23}$

Moles of NaNO₃ = moles of Na⁺

$$=\frac{3.5}{23}$$
 mol

Mass of NaNO₃ = $\frac{3.5}{23} \times 85 = 12.934$ $\approx 13 \text{gm Ans}.$

- **2.** The number of stereoisomers possible for $[Co(ox)_2(Br)(NH_3)]^{2-}$ is ______[ox = oxalate]
- Ans. 3
- **Sol.** $\left[\text{Co} \left(\text{ox} \right)_{3} \text{Br} \left(\text{NH}_{3} \right) \right]^{2-}$

Mirror image

Total stereoisomer = 2 (OI) + 1 POE (pair of enantiomers) = 3

3. The average S-F bond energy in kJ mol^{-1} of SF₆ is ______. (Rounded off to the nearest integer)

[Given : The values of standard enthalpy of formation of $SF_6(g)$, S(g) and F(g) are - 1100, 275 and 80 kJ mol⁻¹ respectively.]

Ans. 309

Sol.
$$SF_6(g) \longrightarrow S(g) + 6F(g)$$

$$\Delta H^o_{reaction} = 6 \times E_{S-F} = \Delta H^o_f[S(g)] + 6 \times \Delta H^o_f[F(g)] - \Delta H^o_f[SF_6(g)]$$

$$6 \times E_{S-F} = 275 + 6 \times 80 - (-1100)$$

$$6 \times E_{S-F} = 1855$$

$$E_{S-F} = \frac{1855}{6} = 309.1667$$

 \simeq 309 kJ/mol Ans.

Learning Temple

4. Emf of the following cell at 298 K in V is $x \times 10^{-2}$.

 $Zn|Zn^{2+}$ (0.1 M)||Ag⁺(0.01 M)| Ag

The value of x is ______. (Rounded off to the nearest integer)

[Given:
$$E_{Zn^{2+}/Zn}^0 = -0.76V; E_{Ag^+/Ag}^0 = +0.80V; \frac{2.303RT}{F} = 0.059$$
]

- Ans. 147
- **Sol.** $Zn(s)|Zn^{+2}(0.1M)||Ag^{+}(0.01M)||Ag(s)$

$$Zn(s) + 2Aq^+ \rightleftharpoons 2Aq(s) + Zn^{+2}$$

$$E^{0} = 0.80 + 0.76 = 1.56 \ ; \quad Q = \left\{ \frac{Zn^{2+}}{(Ag^{+})^{2}} \right\} \label{eq:eq:equation_eq}$$

$$\mathsf{E} = \mathsf{E}^{\scriptscriptstyle 0} - \frac{0.059}{\mathsf{n}} \mathsf{log}(\mathsf{Q})$$

$$\mathsf{E} = 1.56 - \frac{0.059}{2} \mathsf{log} \bigg[\frac{0.1}{(0.01)^2} \bigg]$$

$$\mathsf{E} = 1.56 - \frac{0.059}{2} \mathsf{log} \big[\big(10 \big)^3 \big]$$

$$E = 1.4715 = 147.15 \times 10^{-2} \text{ volt}$$
$$= x \times 10^{-2}$$

$$X = 147.15 \simeq 147 \text{ Ans.}$$

- A ball weighing 10g is moving with a velocity of 90ms^{-1} . If the uncertainty in its velocity is 5%, then the uncertainty in its position is _____x10⁻³³m. (Rounded off to the nearest integer) [Given: h = 6.63×10^{-34} Js]
- A----
- Ans. 1

Sol.
$$m = 10 g = 10^{-2} Kg$$

v = 90 m/sec.

$$\Delta v = v \times 5\% = 90 \times \frac{5}{100} = 4.5 \,\text{m/sec}$$

$$m.\Delta v.\Delta x \ge \frac{h}{4\pi}$$

$$10^{-2} \times 4.5 \times \Delta x \geq \frac{6.63 \times 3 \times 10^{-34}}{4 \times \frac{22}{7}}$$

$$\Delta x \geq \frac{6.63\times7\times2\times10^{-34}}{9\times4\times22\times10^{-2}}$$

$$\Delta x \geq 1.17 \times 10^{-33} \, = \, x \times 10^{-33}$$

$$x=1.17\simeq 1$$

6. In mildly alkaline medium, thiosulphate ion is oxidized by MnO_4^- to "A". The oxidation state of sulphur in "A" is_____.

Ans. 6

 \therefore Oxidation no. of 'S' = +6 Ans.

7. When 12.2 g of benzoic acid is dissolved in 100g of water, the freezing point of solution was found to be -0.93° C (K_f (H_2 O) = 1.86 K kg mol⁻¹). The number (n) of benzoic acid molecules associated (assuming 100% association) is______.

Ans. 2

Sol. n PhCOOH
$$\rightarrow$$
 (PhCOOH)_n

$$N = \frac{1}{x} = i \left\{ As \qquad \alpha = 1 \right\}$$

$$\Delta T_{f} = i \times k_{f} \times m$$

$$0.93 = \frac{1}{n} \times 1.86 \times \frac{12.2 \times 1000}{122 \times 100}$$

n = 2

8. If the activation energy of a reaction is 80.9 kJ mol^{-1} , the fraction of molecules at 700K, having enough energy to react to form products is e^{-x} . The value of x is _____.

(Rounded off to the nearest integer)

[Use
$$R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$$
]

Ans. 14

Sol.
$$E_a = 80.9 \text{kJ / mol}$$

Fraction of molecules able to cross energy barrier = $e^{-E_a/RT} = e^{-x}$

$$x = \frac{E_a}{RT} = \frac{80.9 \times 1000}{8.31 \times 700} = 13.91$$

$$x \simeq 14 \ \text{Ans}$$

- **9.** The pH of ammonium phosphate solution, if pk_a of phosphoric acid and pk_b of ammonium hydroxide are 5.23 and 4.75 respectively, is______.
- Ans. 7

Sol.
$$(NH_4)_3PO_4 = 3NH_4^+ + PO_4^{3-}$$

$$\left[H^{\scriptscriptstyle +}\right] = K_{\scriptscriptstyle a} \times \sqrt{\frac{kw}{k_{\scriptscriptstyle a} \times k_{\scriptscriptstyle b}}}$$

$$pH = pk_a + \frac{1}{2} \left\{ pk_w - pk_a - pk_b \right\}$$

pH =
$$5.23 + \frac{1}{2} \{14 - 5.23 - 4.75\}$$

pH =
$$5.23 + \frac{1}{2}$$
 (4.02) = $7.24 = 7$ (Nearest integer)

- **10.** The number of octahedral voids per lattice site in a lattice is ______. (Rounded off to the nearest integer)
- Ans. 1
- **Sol.** Assuming FCC

No of lactice sites = 6 face centre + 8 corner = 14

No. of octahedral voids = 13

Ratio = $\frac{13}{14}$ = 0.92857 = 1 (Nearest integer)